CIRCULATION COPY

SUBJECT TO RECALL UCRL- 82962
IN TWO WEEKS PREPRINT

Warn

CONTROL AND DIAGNOSTIC DATA STRUCTURES
FOR THE MFTF

J. A. WADE
J. H. CHOY

This paper was prepared for submittal to the
8th SYMPOSIUM ON ENGINEERING PROBLEMS OF
FUSION RESEARCH; IEEE; SHERATON HOTEL,

SAN FRANCISCO, CA., NOVEMBER 13-16, 1979

11-12-79

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

CONTROL AND DIAGNOSTIC DATA STRUCTURES FOR THE MFTF*

. J. A. Wade and J. H. Choy
Lawrence Livermore Laboratory, University of California
Livermore, CA 94550

A Data Base Management System (DBMS) is being
written as an integral part of the Supervisory Con-
trol and Diagnostics System (SCDS) of programs for
control of the Mirror Fusion Test Facility (MPTF).13
The data upon which the DBMS operates consist of con-
trol values and evaluative information required for
facilities control, along with control values and
diagnostic data acquired as a result of each MFTF
shot. The user interface to the DBMS essentially
consists of two views: a computer program interface
called the Program Level Interface (PLI) and a stand-
alone interactive program called the Query Level
Interface to support terminal-based queries. This
paper deals specifically with the data structure
capabilities from the viewpoint of the PLI user.

Introduction

Not only is MFTP large in terms of physical size
and number of subsystems, but also significantly more
data must be acquired and archived than om previous
fusion experiments (see Fig. 1). The question then
is not what data to acquire, but how to present the
data in an easily usable form. As with prior
experiments, the difficulty lies not in acquiring
data (in terms of both what to gather and how much),
but rather in the tremendous volume that must be
analyzed and reduced. From the standpoint of
operations, the facility must be continually measured
so that operations may progress. In addition, the
goal of MFTF is not only continued operatiom, but
understanding the plasma physics associated with the
project. Diagnostic measurements utilizing both
current and prior shots must be analyzed and reduced.

A DBMS that has been specifically adapted for
MFTF--rather than specialized data manipulation rou-
tines incapable of future expansion--is being de-
gigned and implemented. Simply defined, a DBMS is a
set of software tools that allows users to operate
upon their data in a manner that is "close" to the
way the data is thought of. This frees the user from
concern with such incidental questions as disk files,
disk addresses, etc. The data base is that col-
lection of data known to the DBMS; for MFTF, this
includes such items as set points for various sub-
systems; facilities measurements, such as valve set-
tings, temperatures, vacuum levels, and neutral-beam
conditioning status; control parameters required for
operation of diagnostic instruments; and diagnostic
data acquired as the result of a shot. In addition
to current data (i.e. data required for continued
operation of MFIF), the data base also contains ar-
chived data (i.e. data retained from prior shots).

Historical Perspective

The advantages of providing a DBMS for MrTFl, 2
include reduced redundancy, increased consistency,
and greater data independence. Instead of requiring
each computer program to design, build, read, and
write data in its own unique set of private files,
the amount of redundant data can be reduced by cen-

¥ork per formed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore
Laboratory under contract number W-7405-ENG~48.

tralizing the data in a standard form. Secondly,
with an integrated data base, inconsistencies can be
minimized. (The possibility of an inconsistency
exists when the same data are stored in more than one
place.) Third, a DBMS provides the capability for
data independence. Usually, when a program is writ-
ten that requires access to external data, the pro-
grammer builds a set of file-access mechanisms into
the program, defining specifically how and where data
are to be represented. Should the access methods
need changing at a later date, the program must also
be changed. These data-dependent problems are re-~
moved by inserting an interface that differentiates
between the way the user views the data and the way
the data are actually stored.

Although an available DBMS would seemingly suf-
fice for MFTF, three factors rule out this pos-—
sibility. First, a reference to read in the set-
point portion of the data base must occur very quick-
ly--returning within 4 ms, given certain constraints.
Secondly, the amount of returned data can vary from
as little as one character to as much as 32000 small
integers {obviously, the greater the volume of data,
the longer the data-base access). Finally, the en-
vironment within which the DBMS is to operate con-
sists of several computers and their associated peri-
pherals; data may or may not exist in the computer
that contains the program requesting the data. These
factors—taken individually--are not necessarily suf-
ficient to warrant building a new DBMS, however, the
combination is sufficient, especially in view of the
results of extensive benchmarks run on the available
systemsl4,

A list of component parts for the DBMS currently
under development is as follows:

1. The Program Level Interface (PLI) which pro-
vides a method of accessing the data base from com-
puter programs that exercise control over MFIF and
acquire and process diagnostic data resulting from a
shot (see Fig. 2).

2. The Query Level Interface (QLI), which pro-
vides a method of accessing the data base from inter-
active computer terminals.

3. The specialized utility programs that per-—
form such operations as saving shot data on magnetic
tape and inserting prior shot data into the online
data base from tape.

Hardware Overview

As Fig. 1 shows, the DBMS is implemented on nine
Interdata computers (four 8/32's and five 7/32's)
that are interconnected via a multiport shared mem-—
ory. Each computer has its own local memory and disk
storage; the 7/32's each have a 10-megabyte disk, and
the 8/32's each have an 80-megabyte disk with one
300-megabyte disk and an additional 10-megabyte disk
installed on one of the 8/32's. As auxiliary stor-
age, two of the 8/32's each have one 1600-BPI, 75-IPS
tape drive. The shared memory is arranged as two
64-kilobyte blocks. Seven of the nine computers in-
corporate MFTF operator's consoles designed for MFTF
functions. (For a further explanation of the com—
puter hardware, see the paper by Butmer in these pro-
ceedings.” For details of the MFTF operator con-—
soles, see the paper by Speckert in these proceed-
ings.A)

80071600 CARD
READER PRINTER

PRINTER

&’

64kB

8418

SHARED

MEMORY “~\~‘\\~\‘\\-;)

Cmm—
ACILITIES|

F |

7732
19248

PLASMA
STREAMING
SYSTEM

PRIMARY
___@ POWER
v SAFETY
1) 3 St
L@ >\ SUPERCONDUCTING
< MAGNET
_@ o VACUUM
SYSTEM
10 _6) (T GETTERS

L0 << an,

VESSEL

START -UP
NEuTRAL bEAns TR 1/

SUSTAINING

) Wl weutraL seams

Fig. 1. MFTF control and diagnostics system.

Pascal
source program
with DBMS
syntax

Relocatable
object code

Pascal
compiler

Pascal
precompiler

DBMS Logend DBMS Task
data) Input or run-time establisher
definitions output files library
Computer
- programs {}
o) Parts of Resultant
DEMS program

Fig. 2. Using the DBMS program level interface.
2

Each computer supervises one of the following
major MFTF functions:
Overall MFTF supervision
Injector subsystems supervision
Startup neutral beams
Sustaining neutral beams
Plasma streaming
Vessel supervision
Facilities supervision
Data base management
Diagnostic data processing
(For a further explanation of the overall MFTF
system, see the papers by McGoldricks, Wymans,
and Ng/, in these proceedings.)

MFTF Data Base
Overview

As Fig. 3 shows, the MFTF data base may be logic-
ally divided into two main categories: data neces—
sary for control of MFTF and data associated with
plasma diagnostics. The facilities control portion
is further divided into facility set points and
facility evaluation. Facility set points include
such data as voltages, curreats, valve settings, neu-
tral-beam aiming parameters, and timing durationm.
Facility evaluation data include current valve set-
tings, temperatures, vacuum levels, and neutral-beam
conditioning. The plasma diagnostic data may also be
separated into two areas: instrument control param-
eters and diagnostics acquisition.® Data in the
instrument control portion consist of the same types
of information found in the facility set points; how-
ever, they are associated with the diagnostic instru-
mentation, rather than control of the faciliry.
Similarly, the diagnostics acquisition includes data
read from the diagnostics instruments during an MFTF
shot. This specific area of data accounts for the
requirement that the DBMS be able to handle four
megabytes of data per five-minute shot cycle.

In view of the available hardware, it is im-
portant to emphasize that the MPTF data base is dis-
tributed across the entire set of computers—-some
data reside on the disk(s) of each machine, other
data reside in the local memory of each machine, and
still other data reside in the common shared memory.
The reason for the distribution is that the associ-
ated MFTF functions are themselves distributed. The
computer responsible for startup neutral-beam pro-
cesses, for instance, need not know about that por-

tion of the data base involving cryogenics, nor need
there be interaction between certain aspects of the
plasma-streaming system and personnel interlocks.

In addition to a division of data by subsystem,
there are also various frequencies of access to the
data base. For example, when the MFTF tank is being
pumped down, most data associated with the injection
system need not occupy space in memory. On the other
hand, when a shot is in progress, data associated
with pumpdown procedures need not occupy space. As a
general rule in the DBMS, no space is allocated in
memory for currently unused portions of the data
base. Since data may be conveniently divided by sub-
system, currently-in-use data associated with the
sustaining neutral-beam system exist in the local
memory of their respective computer. By contrast,
overall MFTF timing data would exist in the central
shared memory because of their more global importance.

The data residing in the data base have the fol-
lowing characteristics: There is a distinct parallel
between data in the facility set-points area and data
in the instrument control parameters area, since both
are represented by a fairly large set of scalar
values. For example, most valves have only one state
(open or closed); for each neutral beam, only the
next shot value and last shot value for voltages,
currents, and timings need be maintained for control
purposes, etc. Secondly, although there is also an
apparent parallel between data required for facility
evaluation and data from diagnostics acquisition,
most of the data required for facility evalation
(e.g., temperature sensor readings, valve openings,
vacuum levels, etc.) are scalar in nature. On the
other hand, neutral-beam conditioning cannot be ac-
complished without a history for each beam indicating
that simple vectors of data are required. In this
sense, a parallel does exist (i.e., some of facility
evaluation and some of diagnostics acquisition are of
a vector nature). Again, diagnostics acquisition is
responsible for much of the data in the data base.

Most of the examples given above have concerned
the set of data required for current facility oper-
ation or for current (and perhaps immediately prior)
diagnostic shots. For quick comparison of past and
present results, a complete history of MFIF is also
necessary; accordingly, the data base must contain a
large volume of historical data. When a user is re-
ferencing the data base, from either the PLI or the
QLI, both types of data may be accessed.

Associated with the concept of archived data is
the notion that no acquired data may be lost after

MFTF
data base

Facilities Plasma
control diagnostics
Facitity Facility '";’:::;m Diagnos_tic
set points evaluation parameters acquisition
Fig. 3. The MFTF data base.

3

having been entered. Because certain parts of the
data base are more critical than others, we have in-
cluded a mechanism to request that data be "dupli-
cated” in another physical part of the computer net-
work., Thus, a request to write data into a critical
part actually writes them to two distinct physical
locations to ensure against loss. In order to es-
tablish a complete framework for the MFTF data base
we turn next to a discussion of implementation con-
cepts.

Logical View of the MFTF Data Base

The entire data base may be thought of as a set
of tables. Each table has a name, as does each of
its columna. As an example, consider the startup
neutral~beam set-point table in Fig. 4. Its name is
given in the upper left corner of the descriptionm,
and each column has a name, such as beam number (beam
no), fire, raw accel voltage (accel vr), a source
accel voltage (accel vs), etc. Each of the columns
may be of a scalar, vector, or complex (in the sense
of Pascal records) structure. Associated with each
table is a set of rows. (For further description of
the more theoretical aspects of such a data-base
structure, see the discussions on relational data-

“Startup Neutral-Beam Set Point Table"

base syateusz’g’ls. It is sufficient here to ob~
serve that the data base consists of named tables,
with rows and named columns, a structure in which
each column exists for each row defined in any table.

Along with the inherent implications of table
structures, there must also be definitions to defime
the various physical properties of a table. A table
may exist in the central shared memory, in local disk
of one (only) of the computers or on the local disk
of one (only) of the computers.

An additional concept is that of table owmership.
The assumption here is that there is global read ac-
cess to any table in the MFTF data base, however,
table writing is restricted. In addition, since the
count of rows per table may vary greatly, a variety
of row-access methods is provided to minimize the
time required to find a particular row. Associated
with row count per table is the concept of memory-
contained vs virtual tables. Whereas the startup
neutral-beam set-point table is small enough to fit
entirely in the local memory of the respective com—
puter (i.e. it is memory-contained), the diagnostics
data acquired from a particular diagnostics instru-
ment may be so voluminous that they must be accessed
in parts; the entire table is too large to fit im
memory at one time (i.e. it is virtual). Given that

Purpose: Table primarily contains parameters which are sent to the LCC's.
stu_spt beam no fire accel_vr accel_vs calorimetry.
1
2
24

"Each column (other than beam number) contains two values:

first, the latest

value sent to the beam's LCC, and secondly, the next value to be sent.

Description Size Domain Description Size Domain
beam_no 1 1..24 filament_duration 2 x 2 Integer
fire 1x2 yes, no gas_duration 2x2 Integer
accel_v (raw) 2x2 Integer arc_duration 2x2 Integer
accel_v (at source) 2 x 2 Integer accel_duration 2x2 Integer
accel_i 2x2 Integer auto_conditioning 1 x 2 on, off
arc_v 2x2 Integer rate 1x2 shot, manual
suppressor_v 2x2 Integer accel_io 2 x2 Integér
filament_v 2x2 Integer accel_vo 2x2 Integer
gas_state 1x2 on, off aiming_2 2x2 Integer
gas_percent 2x2 Integer beam_dump_flow 2x2 Integer
beam_delay 2x2 Integer calorimetry 1x2 on, off
filament_gas_delay 2 x 2 Integer

gas_arc_delay 2 x2 Integer

gas_accel_delay 2x2 Integer

Fig. 4. User access —— (user definition)

4

“Startup Neutral-Beam Set Point Table"

CONST max_stu_nbs
max_sus_nbs
max_nb_value

24; "Max number of startup neutral beams."
24; “Max number of sustaining neutral beams.'
24; "Max value of neutral beam numbers.”

" uu

TYPE gas_type = RECORD
state : (on, off);
percent : 0..100;
pressure : INTEGER;

END;
nb_type = RECORD
beam_no ¢ l..max_nb_value;
fire : (yes, no);

accel_vr ¢ INTEGER;
accel_vs : INTEGER;
accel_i : INTEGER;
gas : gas_type;

;.\cce’l_‘ih : ARRAY (0..400) OF INTEGER;
accel_vh ¢ ARRAY (0..100) OF INTEGER;

gas_h : ARRAY (0..100) OF gas_type;
END;
RLN stu_spt : ARRAY (0..max_stu_nbs) OF nb_type AS ..(rln opts)..;
sus_spt : ARRAY (0..max_sus_nbs) OF nb_type AS ..(rlIn opts)..;
VAR stu_sp : nb_type;
sus_sp : nb_type;

Fig. 5. User access —— (Pascal, DBMS definitions).

“Startup Neutral-Beam Set Point Table"

1a. stu_spt(beam no = J).accel_vr := T;

1. T == stu_spt(J).accel_vr;

2. stu_spt(accel_vr = T).Fire := no;

3a. stu_sp := stu_spt(J);

3b. stu_sp.gas.state := stu_spt (gas.pressure = 37).gas.state;
4,

sum :
vec

i := 0

WHILE vec (i) O DO BEGIN
sum := sum + stu_spt(vec 1)}.accel_i;
=9+
END;

0;
LOC OF stu_spt(fire = yes);

Fig. 6. User access —— (Pascal, DBMS usage),
5

&

certain data are more important than other data (i.e.
more difficult to reconstruct), duplicate tables may
be declared such that whenever the primary table is
yritten into, its duplicate is also updated without
intervention from the user.

Data Base Management System

Overview

As noted above, the DBMS is a set of software
tools that allow the user to operate upon data in a
manner that is "closer” to the way in which the data
is thought of. This implies the existence of certain
concepts as elements of the DBMS, which are outlined
here. First, for the data base to exist, it must
have a structural definition, both from the experi-
menter's point of view, and from the physical com-
puter hardware viewpoint. Secondly, once we are able
to define structures, the corresponding space (on
disk and in memory) must be allocated, along with
necessary supporting information. Finally, given
that the data base is ready for access, a set of rou-
tines must exist to facilitate reading, writing, etc.
This implies throughput requirements, in terms of
both speed and volume of data. For example, How long
does it take to obtain the accel current for sustain-
ing neutral beam 20, or How long does it take to
change the accel current? On the other hand, How
does the DBMS respond to being required to store many
megabytes of plasma diagnostics data?

In addition to certain minimal throughput re-
quirements, we must be concerned with what users type
on the console keyboards in order to access the data
base, usually referred to as the user interface.

This interface must at least have read, write, and
search capabilities, in addition to whatever support
is necessary. Again, the accel current for sustain-
ing beam 20 must be obtained for a calculation in a
computer program, it must be changed as a result of
perhaps user input, or the beam numbers must be ob-
tained for all beams that have an accel current
greater than a specified value.

These capabilities must be available from appli-
cations programs (i.e. programs concerned with con-
trol of MFTF or programs concerned with plasma diag-
nostics data reduction following a shot) and inter-
actively from terminals where physicists are search-
ing through prior shot data, performing correlation
studies, etc. Given that the capability to change
data exists and that the data are considered valuable
in some sense, there must alsoc be a way of both
selectively recording these changes (i.e., who
initiated the change, when, and to what new value)
and preventing unauthorized changes. (For a more
detailed explanation of the MFITF DBMS, see the paper
by Choy and Wade in these proceedings.l0)

User Interface

Noting that the data base is referenced both by
prepackaged programs and by users from a terminal,
the user interface consists of the PLI and the QLI.
The PLI is meant for interaction upon the data base
from computer programs that muat perform fairly ex-
tensive analysis; the DBMS is quite simply the read
and write mechanism. By contrast, the QLI is a term-
inal-based interactive program, built using PLI
facilities, that provides a user at a terminal the
capability to examine and modify the data base. Suf-
ficient computational resources exist within the QLI
to permit reasonably simple analysis to be performed
without requiring that a full program be written. We
assumed that the types of users interacting with the
QLI have some--but limited programming experience--—
usually in conjunction with other disciplines such as
plasma physics and various types of engineering;

hence, the QLI is oriented as an abbreviated program-
ming language.

Program level Interface

The PLI consists of two parts; a precompiler, and
a runtime subroutine library. Since the computer
programs running on SCDS for comtrolling MPTF are
being writtem using the Pascal programming lan-
guagell, the precompiler has as primary input a
Pascal source program and produces a resultant source
program as output. The primary function of the pre-
compiler is to change occurrences of data base refer-
ences from a syntax that is more easily understood by
the person creating the source program into a syntax
intelligible to the Pascal compiler.

An additional aspect of the precompiler function
is indicated in Fig. 2: both the source program con-
taining DBMS syntax and a set of DBMS data defini-
tions are supplied to the precompiler. The pre-
compiler then uses the data definitions (which de-
scribe the data base) to transform requests to
create, open, close, read, and write the data base
into procedural references. The result is a source
program with DBMS runtime calls that is then compiled
by Pascal. The output from the compiler is combined
with the DBMS runtime library to create the computer
program. Whenever the program is subsequently rum,
the runtime routines are called when access to the
data base is required, and thus per form the request-
ing operations.

Data Structure Capabilities

In view of the above discussion regarding the
PLI, what data structure capabilities are available
in the DBMS? First, the data structures available in
the Pascal programming language are also available
from the PLI. The precompiler parses declarative
syntax to an internal form, storing it in a runtime
symbol table maintained on disk. Upon the occurrence
of an open command to the DBMS (indicating the pro-
gram is intending to access a table in the data
base), the associated declarative structures are read
from disk into memory. Figure 4 uses the startup
neutral-beam set-point table as an example. The
initial work done to establish a new table in the
data base is to generate a user definition--essen-
tially how the data looks to the user. Here the
user, in conjunction with the Data Base administra-
tor, defines the table name, column names, the data
structure of each column (including size, data type,
domain, etc.), and other pertinent information.

Thereafter, it is transformed into a syntax ac-
ceptable by the precompiler for inclusion in the data
base (see Fig. 5). By using Pascal syntax, along
with a few minimal extensions, the sizes of various
entities are defined with the Pascal CONST construct,
and the actual definition of a given row of the table
is specified with the Pascal TYPE comstruct. Note
here that the data structure for all rows of a table
have the same shape; the TYPE statement is used to
establish the structure of any given row of the
table. Following all size and structure definitions
via CONST and TYPE constructs, the RLN construct is
used to declare the table itself. This construct is
not part of the Pascal syntax; it is parsed by the
precompiler and removed so that the compiler does not
see it. Upon recognition of the RLN comstruct, the
runtime symbol table entry is created for later use.
In more specific terms, the table name is '"bound" to
a specific data structure at this time, along with
other information about the table, such as its over-
all size (i.e. the number of rows in the table),
where it exists (in memory, on disk, etc.), on what
computer within the SCDS network, row access methods
to use upon the occurrence of read and write commands

to the table, etc. Again, since the Pascal TYPE con-
struct is being used to declare the structure of a
typical row, the data structures available in Pascal
are available in the data base.

Program Level Interface ~ Usage Constructs

After the set of tables has been declared within
some program, the user may access the tables. This
is done by first opening a given table (causing en-
tries to be made in the DBMS runtime symbol table and
data to be read from disk), then requesting reads
and/or writes to the table. This is accomplished
with a special syntax that is not a part of the
Pascal syntax. As before, the precompiler parses
these constructs, replacing them this time with con-
structs acceptable to Pascal. Figure 6 shows exam-
ples of how reads and writes are performed. In exam-
ple la, the startup neutral-beam set-point table's
accel raw voltage is being changed for a specific
beam (the beam whose number is contained in the vari-
able J) to the valve contained in variable T. Exam-
ple 1b causes the data base to be read; accel raw
voltage for beam number J is read and stored in the
variable T. Example 2 shows a write to the data base
(as did example la). However, in this case, the col-
umn name labelled "fire" receives the value of "no"
wherever the accel raw voltage has the value con-
tained in T. Given that the variable stu sp is bound
to the TYPE structure used to define individual rows
of the table stu spt (note the VARs in Figure 5),
then example 3a causes the entire row (i.e., all col-
umn values) for beam J to be read from the data base
and stored in the variable., This is of value when
numerous operations with the same row of a table must
be performed so that data base accesses are mini-
mized. Example 3b shows a similar data base read,
except that a subset of the row is read. There are
times where one wishes to access a subset of the rows
of a table; example 4 shows the generation of a sum,
The first data-base access (the LOC OF construct)
returns the locations of all rows in the table whose
beams are intended to be fired (where fire = yes).
Then, within the WHILE iteration, subsequent data
base accesses are made, one for each row (and there-
fore beam) in the table, generating the sum of all
accel currents whose beams are intended to be fired.

Summarz

After an introductory discussion of the histori-
cal perspective of reasons for generating a new DBMS,
what the MFTF data base looks like, and an overview
of the Data Base Management System, the user view of
the system is discussed. In particular, the Program
level Interface is explained together with its pre-
compiler and associated runtime routine library.
Examples of both declarative capability and usage
capability are then given to demonstrate the use of
the system.

Refgggncei

1. Clarke, T. 0., J. E. Crapuchettes, and P. D.
Siemens, MFTF Data Base Management Study for
University of California, Lawrence Livermore
Laboratory, Livermore, California, September,
1977.

2., Date, C. J., An Introduction to Database Systems,
Second Editiom, 1976, pp. 3 - 9.

3. Butner, D., "MFTF Supervisory Control and'DiagT
nostics System Hardware," Proceedings Engineering
Problems of Fusion Research (I1EEE), 1979.

6.

10.

11.

12.

13.

14.

15.

Speckert, G. C., “The Man Machine Interface for
MFTF," Proceedings Engineering Problems of Fusion
Research (IEEE), 1979.

McGoldrick, P. R., "SCDS Distributed System,"
Proceedings Engineering Problems of Fusion Re-
search (IEEE), 1979.

Wyman, R. H., "Results of Studies Performed on
the Model of the MFTF Supervisory Controls and
Diagnostics System (SCDS)," Proceedings Engineer-
ing Problems of Fusion Research (IEEE), 1979.

Ng, W. C., "An Overview of MFTF Computer Control
and Diagnostics System," Proceedings Engineering
Problems of Fusion Research (IEEE), 1979.

Coffield, F. E. and G. E. Davis, "MFTF Plasma
Diagnostics Data Acquisition System," Proceedings
Engineering Problems of Fusion Research (IEEE),
1979.

Codd, E. F., A Relational Model of Data for Large
Shared Dats Banks, CACM 13, June 1970, pp 377-387.

Choy, J. H. and J. A. Wade, "A Data Base Manage-
ment System for the MFIF," Proceedings Engineer-
ing Problems of Fusion Research (IEEE), 1979.

Jensen, Kathleen and Wirth, Niklaus, PASCAL User
Manual and Report, Second Edition, Springer-
Verlay, New York, 1974.

Young, Robert, PASCAL/32 Language Definitiom,
Department of Computer Science, Kansas State
University, 1978.

Lindquist, W. B., R. Eckard, T. Holdsworth, L.
Mooney, D. Moyer, R. Peterson, D. Shimer, R.
Wyman, and H. Van Ness, "Overview of the MFTF
Electrical Systems,'" Proceedings Engineering
Problems of Fusion Research (IEEE), 1979.

Choy, Joseph H., MFTF Total Benchmark, Jume,
1979, LLL, Livermore, California, UCID 18209.

Kim, Won, Relational Database Systems, Computing
Surveys, Vol. 11, No. 3, September, 1979.

NOTICE

“This report was prepared as an account of work
sored by the eﬁniux! States Government.
either the United States nor the United States
Department of Energy, nor any of their employoes,
nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or
implied, or assumes any legal liability or respon-
sibility for the accuracy, completeness or
usefulness of an{ information, apparatus, product
or process disclosed, ot represents that its use
would not infringe privately-owned rights.”

Reference to a company or product
names does not imply approval or
recommendation of the product by
the University of California or the
U.S. Department of Energy to the
exclusion of others that may be
suitable.

